Cho hình chóp \(O.\,ABC\) có ba cạnh \(OA,\,OB,\,OC\) đôi một vuông góc và \(OA = OB = OC = a\). Gọi \(M\) là trung điểm cạnh \(AB\). Góc hợp bởi hai véc tơ \(\overrightarrow {BC} \) và \(\overrightarrow {OM} \) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGắn hệ trục tọa độ \(Oxyz\) như hình vẽ với \(A \in Ox;B \in Oy;C \in Oz\) và \(OA = OB = OC = a\)
Khi đó \(A\left( {a;0;0} \right),B\left( {0;a;0} \right),C\left( {0;0;a} \right) \Rightarrow M\left( {\dfrac{a}{2};\dfrac{a}{2};0} \right)\)
Ta có \(\overrightarrow {OM} = \left( {\dfrac{a}{2};\dfrac{a}{2};0} \right) \Rightarrow \left| {\overrightarrow {OM} } \right| = \sqrt {\dfrac{{{a^2}}}{4} + \dfrac{{{a^2}}}{4} + 0} = \dfrac{{a\sqrt 2 }}{2}\) và \(\overrightarrow {BC} = \left( {0; - a;a} \right) \Rightarrow \left| {\overrightarrow {BC} } \right| = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
Từ đó cos\(\left( {\overrightarrow {BC} ;\overrightarrow {OM} } \right) = \dfrac{{\overrightarrow {BC} .\overrightarrow {OM} }}{{\left| {\overrightarrow {BC} } \right|.\left| {\overrightarrow {OM} } \right|}} = \dfrac{{\dfrac{a}{2}.0 + \dfrac{a}{2}.\left( { - a} \right) + 0.a}}{{a\sqrt 2 .\dfrac{{a\sqrt 2 }}{2}}} = \dfrac{{ - \dfrac{{{a^2}}}{2}}}{{{a^2}}} = - \dfrac{1}{2}\)
Nên góc giữa hai véc tơ \(\overrightarrow {BC} ;\overrightarrow {OM} \) là \(120^\circ .\)
Chọn A.