Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng \(a\) , \(\angle BSA = {60^0}\) . Tính thể tích \(V\) của khối chóp \(S.ABCD?\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(AC \cap BD = \left\{ O \right\} \Rightarrow SO \bot \left( {ABCD} \right).\)
Ta có: \(S.ABCD\) là hình chóp tứ giác đều \( \Rightarrow SA = SB \Rightarrow \Delta SAB\) cân tại \(S.\)
Lại có \(\angle ASB = {60^{0\;}}\;\;\left( {gt} \right) \Rightarrow \Delta SAB\) là tam giác đều \( \Rightarrow SA = SB = AB = a.\)
Ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \) (định lý Pitago) \( \Rightarrow AO = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}.\)
\(\begin{array}{l} \Rightarrow SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}.\\ \Rightarrow {V_{SABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}.\end{array}\)
Chọn D.