Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm AB.
Ta có \(\left( SAB \right)\bot \left( ABCD \right)\) theo giao tuyến AB. Trong \(\left( SAB \right)\) có \(SH\bot AB\) nên \(SH\bot \left( ABCD \right)\).
Kẻ \(HK\ \text{//}\ AD\) \(\left( K\in CD \right)\) \(\Rightarrow HK\bot CD\)
mà \(SH\bot \left( ABCD \right)\Rightarrow CD\bot SH\). Do đó \(CD\bot \left( SHK \right)\).
Suy ra \(\left( SCD \right)\bot \left( SHK \right)\) theo giao tuyến SK.
Trong \(\left( SHK \right)\), kẻ \(HI\bot SK\) thì \(HI\bot \left( SCD \right)\).
Ta có: \(AB\ \text{//}\ \left( SCD \right)\) nên \(d\left( AB,SC \right)=d\left( AB,\left( SCD \right) \right)=d\left( H,\left( SCD \right) \right)=HI\).
Tam giác SAB vuông cân có \(AB=2a\Rightarrow SH=a\)
Tam giác SHK có \(\frac{1}{H{{I}^{2}}}=\frac{1}{S{{H}^{2}}}+\frac{1}{H{{K}^{2}}}\Rightarrow HI=\frac{2\sqrt{5}a}{5}\).
Vậy \(d\left( AB,SC \right)=\frac{2\sqrt{5}a}{5}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT ChuyênThái Bình lần 3