Một nhóm gồm \(10\) học sinh trong đó có \(7\) học sinh nam và \(3\) học sinh nữ. Chọn ngẫu nhiên \(3\) học sinh từ nhóm \(10\) học sinh đi lao động. Tính xác suất để \(3\) học sinh được chọn có ít nhất một học sinh nữ?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiSố phần tử của không gian mẫu: \(n\left( \Omega \right)=C_{10}^{3}\).
Gọi \(A\) là biến cố: “\(3\) học sinh được chọn có ít nhất một học sinh nữ”.
Suy ra: \(\overline{A}\) là biến cố: “\(3\) học sinh được chọn không có học sinh nữ”.
Khi đó \(n\left( \overline{A} \right)=C_{7}^{3}\)\(\Rightarrow P\left( \overline{A} \right)=\frac{C_{7}^{3}}{C_{10}^{3}}=\frac{7}{24}\). Vậy \(P\left( A \right)=1-P\left( \overline{A} \right)=\frac{17}{24}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT ChuyênThái Bình lần 3
02/12/2024
135 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9