Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng \(\left( ABCD \right)\). Góc giữa hai mặt phẳng \(\left( SCD \right)\) và \(\left( ABCD \right)\) bằng \({{60}^{0}}.\) Thể tích của khối chóp S.ABCD là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm của AB.
Vì tam giác SAB cân tại S và \(\left( SAB \right)\bot \left( ABCD \right)\) nên \(SH\bot \left( ABCD \right)\).
Gọi M là trung điểm của CD.
Vì tứ giác ABCD là hình vuông nên \(HM\bot AD\) và HM=a.
Ta có \(\left. \begin{array}{l} CD \bot HM\\ CD \bot SH \end{array} \right\} \Rightarrow CD \bot \left( {SHM} \right) \Rightarrow CD \bot SM.\)
Khi đó \(\left( \left( SCD \right),\left( ABCD \right) \right)=\left( SM,HM \right)=\widehat{SMH}={{60}^{0}}\).
Suy ra \(SH=HM.\tan \widehat{SMH}=a.\tan {{60}^{0}}=a\sqrt{3}.\)
Vậy thể tích của khối chóp S.ABCD là: \({{V}_{S.ABCD}}=\frac{1}{3}SH.{{S}_{ABCD}}=\frac{1}{3}.a\sqrt{3}.{{a}^{2}}=\frac{{{a}^{3}}\sqrt{3}}{3}\) (đvtt).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trưng Vương lần 4