Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\) Cạnh bên \(SA\) vuông góc với mặt phẳng đáy \(\left( ABCD \right).\) Góc giữa mặt phẳng \(\left( SBC \right)\) và mặt đáy bằng \({{60}^{0}}.\) Tính thể tích của khối chóp.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(\left\{ \begin{array}{l} BC \bot AB\left( 1 \right)\\ BC \bot SA \end{array} \right. \Rightarrow BC \bot SB\left( 2 \right).\)
Từ (1) và (2) suy ra góc giữa mặt phẳng \(\left( SBC \right)\) và mặt đáy \(\left( ABCD \right)\) là góc \(\widehat{SBA}\), kết hợp giả thiết suy ra \(\widehat{SBA}={{60}^{0}}.\)
Xét tam giác vuông \(SAB\) ta có \(\tan {{60}^{0}}=\frac{SA}{AB}\Rightarrow SA=AB. \tan {{60}^{0}}=2a\sqrt{3}.\)
Thể tích của khối chóp \(S.ABCD\) là \(V=\frac{1}{3}.Bh=\frac{1}{3}{{S}_{ABCD}}.SA=\frac{1}{3}{{\left( 2a \right)}^{2}}2a\sqrt{3}=\frac{8{{a}^{3}}\sqrt{3}}{3}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lý Thái Tổ lần 3