Đường thẳng \(y=x+1\) cắt đồ thị hàm số \(y=\frac{x-1}{x-2}\) tại hai điểm phân biệt \(A,B. \) Khi đó độ dài \(AB\) bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiPhương trình hoành độ giao điểm của đường thẳng \(y=x+1\) và đồ thị hàm số \(y=\frac{x-1}{x-2}\) là \(x+1=\frac{x-1}{x-2}\)
\(\left\{ \begin{array}{l} x \ne 2\\ \left( {x + 1} \right)\left( {x - 2} \right) = x - 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ne 2\\ {x^2} - 2x - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 1 + \sqrt 2 \\ x = 1 - \sqrt 2 \end{array} \right.\)
Ta có \(A\left( {1 + \sqrt 2 ;2 + \sqrt 2 } \right);B\left( {1 - \sqrt 2 ;2 - \sqrt 2 } \right).\)
Vậy AB = 4
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lý Thái Tổ lần 3
13/11/2024
365 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9