Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng \(a.\) Tính cosin của góc giữa hai mặt bên không liền kề nhau.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiHình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(a\) , ta tìm góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\).
Gọi \(M\), \(N\) là trung điểm các cạnh \(AD\) và \(BC\), khi đó \(SM \bot AD\) và \(SN \bot BC\) (do các tam giác \(SBC;SAD\) là các tam giác đều).
Vì \(BC//AD\) nên giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là đường thẳng \(d\) qua \(S\) và song song \(AD\), \(BC\).
Vì \(SM \bot AD\) và \(SN \bot BC\) nên \(S\) và \(D\) mà \(SM \subset \left( {SAD} \right);SN \subset \left( {SBC} \right)\) nên góc giữa hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {SBC} \right)\) là góc \(\widehat {MSN}\).
Mặt bên là các tam giác đều cạnh \(a\) nên \(SM = SN = \dfrac{{a\sqrt 3 }}{2}\), \(MN = AB = a\).
Khi đó : \(\cos \widehat {MSN} = \dfrac{{S{M^2} + S{N^2} - M{N^2}}}{{2SM.SN}} = \dfrac{{{{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} + {{\left( {\dfrac{{a\sqrt 3 }}{2}} \right)}^2} - {a^2}}}{{2.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{\dfrac{{{a^2}}}{2}}}{{\dfrac{{3{a^2}}}{2}}} = \dfrac{1}{3}\).
Chọn: A
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Phạm Phú Thứ