Cho hình chóp tứ giác đều \(S.ABCD\) có đáy là hình vuông tâm \(O\) cạnh \(2a.\) Thể tích khối chóp \(S.ABCD\) bằng \(4{a^3}\). Tính khoảng cách từ điểm \(O\) tới mặt bên của hình chóp.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(S.ABCD\) là chóp tứ giác đều có \(O\) là tâm đáy nên \(SO \bot \left( {ABCD} \right)\). Gọi \(M\) là trung điểm \(BC\), trong \(\Delta SOM\) kẻ \(OH \bot SM\) tại \(H.\)
Vì \(ABCD\) là hình vuông tâm \(O\) nên \(OB = OC = OA = OD = \dfrac{{BD}}{2}.\) Suy ra \(OM \bot BC\) (vì \(\Delta OBC\) vuông cân có \(OM\) là trung tuyến cũng là đường cao)
Ta có \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot BC\), lại có \(OM \bot BC\) nên \(BC \bot \left( {SOM} \right)\) suy ra \(BC \bot OH.\)
Từ đó vì \(\left\{ \begin{array}{l}OH \bot SM\\OH \bot BC\end{array} \right. \Rightarrow OH \bot \left( {SBC} \right)\) tại \(H \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OH.\)
Xét tam giác \(OBC\) vuông cân tại \(O\) có trung tuyến \(OM = \dfrac{1}{2}BC = \dfrac{1}{2}.2a = a.\)
Diện tích đáy \({S_{ABCD}} = {\left( {2a} \right)^2} = 4{a^2}\). Ta có \({V_{S.ABCD}} = \dfrac{1}{3}SO.{S_{ABCD}} \Leftrightarrow 4{a^3} = \dfrac{1}{3}SO.4{a^2} \Rightarrow SO = 3a.\)
Xét tam giác \(SOM\) vuông tại \(M\) có \(OH\) là đường cao nên theo hệ thức lượng trong tam giác vuông ta có \(\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{M^2}}} = \dfrac{1}{{{{\left( {3a} \right)}^2}}} + \dfrac{1}{{{a^2}}} \Leftrightarrow O{H^2} = \dfrac{{10}}{{9{a^2}}} \Rightarrow OH = \dfrac{{3a\sqrt {10} }}{{10}}\)
Vậy \(d\left( {O;\left( {SBC} \right)} \right) = \dfrac{{3\sqrt {10} }}{{10}}\) .
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Võ Chí Công