Cho hình chóp tứ giác S.ABCD có thể tích bằng V. Lấy điểm A' trên cạnh SA sao cho \(SA' = \dfrac{1}{3}SA\). Mặt phẳng qua A' và song song với đáy của hình chóp cắt các cạnh SB, SC, SD lầ lượt tại B', C', D'. Khi đó thể tích hình chóp S.A'B'C'D' bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(SA' = \dfrac{1}{3}SA \)
\(\Rightarrow \left\{ \begin{array}{l}SB' = \dfrac{1}{3}SB\\SC' = \dfrac{1}{3}SC\\SD' = \dfrac{1}{3}SD\end{array} \right.\)
Khi đó ta có:
\(\dfrac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SB'}}{{SB}}.\dfrac{{SC'}}{{SC}} \)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}} \)
\(\Rightarrow {V_{S.A'B'C'}} = \dfrac{1}{{27}}{V_{S.ABC}}\)
\(\dfrac{{{V_{S.A'D'C'}}}}{{{V_{S.ADC}}}} = \dfrac{{SA'}}{{SA}}.\dfrac{{SD'}}{{SD}}.\dfrac{{SC'}}{{SC}}\)
\(\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}} \)
\(\Rightarrow {V_{S.A'D'C'}} = \dfrac{1}{{27}}{V_{S.ADC}}\)
\( \Rightarrow {V_{S.A'B'C'D'}} = {V_{S.A'B'C'}} + {V_{S.A'D'C'}} \)\(\,= \dfrac{1}{{27}}\left( {{V_{S.ABC}} + {V_{S.ADC}}} \right) = \dfrac{V}{{27}}\)
Chọn đáp án A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lương Thế Vinh