Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và \(\widehat {A\,\,} = {60^0}\) . Chân đường cao hạ từ B' xuống (ABCD) trùng với giao điểm 2 đường chéo, biết BB' = a. Thể tích khối lăng trụ là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi O là giao điểm của AC và BD
Xét tam giác ABD có \(\left\{ \begin{array}{l}AB = AD\\\widehat A = {60^ \circ }\end{array} \right.\)
\( \Rightarrow \Delta ABD\) là tam giác đều
Hay \(AB = AD = BD = a \Rightarrow BO = \dfrac{a}{2}\)
Khi đó \(B'O = \sqrt {B{{B'}^2} - B{O^2}} = \sqrt {{a^2} - \dfrac{{{a^2}}}{2}} \)\(\,= \dfrac{{a\sqrt 3 }}{2}\)
\( \Rightarrow V = B'O.{S_{ABCD}} = \dfrac{{a\sqrt 3 }}{2}.\dfrac{{a\sqrt 3 }}{2}.2.a \)\(\,= \dfrac{{3{a^3}}}{2}\)
Chọn đáp án A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lương Thế Vinh