Cho hình hộp \(ABCD.{A}'{B}'{C}'{D}'\) có chiều cao bằng 8 và diện tích đáy bằng 9. Gọi \(M\), \(N\), \(P\), \(Q\) lần lượt là tâm các mặt bên \(AB{B}'{A}'\), \(BC{C}'{B}'\), \(CD{D}'{C}'\), \(DA{A}'{D}'\). Tính thể tích khối đa diện lồi có các đỉnh là A, B, C, D,M, N, P, Q
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi E, F, G, H lần lượt là trung điểm của \(A{A}'\), \(B{B}'\), \(C{C}'\), \(D{D}'\).
Khi đó \({{V}_{ABCD.EFGH}}=\frac{1}{2}{{V}_{ABCD.{A}'{B}'{C}'{D}'}}=\frac{1}{2}.9.8=36\)
Gọi V là thể tích khối tứ diện lồi cần tính, khi đó \(V={{V}_{ABCD.EFGH}}-{{V}_{E.AMQ}}-{{V}_{F.BMN}}-{{V}_{G.CNP}}-{{V}_{H.DPQ}}\)
Trong đó \({{V}_{E.AMQ}}={{V}_{F.BMN}}={{V}_{G.CNP}}={{V}_{H.DPQ}}=\frac{EQ}{EH}.\frac{EM}{EF}.{{V}_{E.AHF}}=\frac{1}{4}.\frac{1}{6}.{{V}_{ABCD.EFGH}}=\frac{36}{24}=\frac{3}{2}\)
\(\Rightarrow V=36-4.\frac{3}{2}=30\)