Cho hình lăng trụ \(ABCD.A'B'C'D'\) có hình chiếu \(A'\) lên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của \(AB,\,ABCD\) là hình thoi cạnh \(2a,\,\,\angle ABC = {60^0};\,BB'\) tạo với đáy một góc \({30^0}\). Tính thể tích hình lăng trụ \(ABCD.A'B'C'D'\) ?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(H\) là trung điểm của \(AB\) ta có \(A'H \bot \left( {ABCD} \right)\).
Trong \(\left( {ABB'A'} \right)\) kẻ \(B'K//A'H\,\,\left( {K \in AH} \right)\) ta có \(B'K \bot \left( {ABCD} \right)\)
\( \Rightarrow \angle \left( {BB';\left( {ABCD} \right)} \right) = \angle \left( {BB';BK} \right) = \angle B'BK = {30^0}\).
Dễ thấy \(A'B'KH\) là hình bình hành \(\left( {A'B'//HK,\,\,A'H//B'K} \right) \Rightarrow HK = A'B' = 2a\).
Mà \(BH = \frac{1}{2}AB = a \Rightarrow BK = a\).
Xét tam giác vuông \(B'BK\) ta có : \(B'K = BK.\tan {30^0} = \frac{{a\sqrt 3 }}{3}\).
Xét \(\Delta ABC\) ta có : \(\left\{ \begin{array}{l}AB = BC\,\,\left( {gt} \right)\\\angle ABC = {60^0}\,\,\left( {gt} \right)\end{array} \right. \Rightarrow \Delta ABC\) đều cạnh \(2a\).
\( \Rightarrow {S_{\Delta ABC}} = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \Rightarrow {S_{ABCD}} = 2{S_{\Delta ABC}} = 2{a^2}\sqrt 3 \).
Vậy \({V_{ABCD.A'B'C'D'}} = B'K.{S_{ABCD}} = \frac{{a\sqrt 3 }}{3}.2{a^2}\sqrt 3 = 2{a^3}\).
Chọn A.