Cho khối chóp tứ giác đều S.ABCD. Gọi M là trung điểm SC, mặt phẳng (P) chứa AM và song song với BD chia khối chóp thành 2 khối đa diện. Đặt \(V_1\) là thể tích khối đa diện có chứa đỉnh S và \(V_2\) là thể tích khối đa diện có chứa đáy. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiNhìn hình vẽ ta thấy \({V_1} = {V_{S.MIAG}}\)
Gọi \({V_{S.ABCD}} = V \Rightarrow {V_{S.ABC}} = \frac{V}{2}\)
Có \(\frac{{{V_{S.AGM}}}}{{{V_{S.ABC}}}} = \frac{{SG}}{{SB}}.\frac{{SM}}{{SC}} = \frac{2}{3}.\frac{1}{2} = \frac{1}{3} \Rightarrow {V_{S.AGM}} = \frac{V}{6}\)
\(\begin{array}{l}
\frac{{{V_{S.AMI}}}}{{{V_{S.ADC}}}} = \frac{{SM}}{{SC}}.\frac{{SI}}{{SD}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}\\
\Rightarrow {V_{S.AMI}} = \frac{V}{6} \Rightarrow {V_{S.MIAG}} = \frac{V}{3} \Rightarrow {V_2} = V - \frac{V}{3} = \frac{2}{3}V \Rightarrow \frac{{{V_2}}}{{{V_1}}} = 2
\end{array}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Nguyễn Trãi lần 1