Cho khối lập phương ABCD.A’B’C’D’. Cắt khối lập phương trên bởi các mặt phẳng (AB’D’) và (C’BD) ta được ba khối đa diện. Xét các mệnh đề sau:
(I): Ba khối đa diện thu được gồm hai khối chóp tam giác đều và một khối lăng trụ tam giác.
(II): Ba khối đa diện thu được gồm hai khối tứ diện và một khối bát diện đều
(III): Trong ba khối đa diện thu được có hai khối đa diện bằng nhau
Số mệnh đề đúng là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChia khối lập phương ABC.A’B’C’ bởi mặt phẳng (AB’D’) và (C’BD) ta được:
+) Chóp A.A’B’D’
+) Chóp C’.BCD
+) Khối bát diện ABD.B’C’D’
Ta có \({V_{A.A'B'D'}} = \frac{1}{3}AA'.{S_{A'B'D'}} = \frac{1}{3}AA'.\frac{1}{2}A'B'.A'D' = \frac{1}{6}{V_{ABCD.A'B'C'D'}}\)
Tương tự ta có \({V_{C'.BCD}} = \frac{1}{6}{V_{ABCD.A'B'C'D'}}\)
\( \Rightarrow {V_{ABD.B'C'D'}} = \frac{2}{3}{V_{ABD.B'C'D'}}\)
Các khối A.A’B’D’ và C’.BCD không phải là chóp tam giác đều và khối bắt diện ABD.B’C’D’ không phải là khói bát diện đều
Do đó chỉ có mệnh đề III đúng
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Lương Văn Tụy lần 2