Cho số phức z có phần thực là số nguyên và z thỏa mãn \(\left| z \right| - 2\overline z = - 7 + 3i + z\). Mô đun của số phức \({\rm{w}} = 1 - z + {z^2}\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(z = a + bi\left( {a \in R,b \in R} \right)\), ta có:
\(\begin{array}{l}
\left| z \right| - 2\overline z = - 7 + 3i + z \Leftrightarrow \sqrt {{a^2} + {b^2}} - 2\left( {a - bi} \right) = - 7 + 3i + a + bi\\
\Leftrightarrow \sqrt {{a^2} + {b^2}} - 2a + 2bi + 7 - 3i - a - bi = 0\\
\Leftrightarrow \sqrt {{a^2} + {b^2}} - 3a + 7 + \left( {b - 3} \right)i = 0\\
\Leftrightarrow \left\{ \begin{array}{l}
\sqrt {{a^2} + {b^2}} - 3a + 7 = 0\\
b - 3 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
b = 3\\
\sqrt {{a^2} + 9} - 3a + 7 = 0\left( 1 \right)
\end{array} \right.
\end{array}\)
Giải (1) ta có:
\(\begin{array}{l}
\sqrt {{a^2} - 9} - 3a + 7 = 0 \Leftrightarrow \sqrt {{a^2} - 9} = 3a - 7 \Leftrightarrow \left\{ \begin{array}{l}
3a - 7 \ge 0\\
{a^2} + 9 = 9{a^2} - 42a + 49
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
a \ge \frac{7}{3}\\
8{a^2} - 42a + 40 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a \ge \frac{7}{3}\\
\left[ \begin{array}{l}
a = 4\\
a = \frac{5}{4}
\end{array} \right. \Leftrightarrow a = 4(tm)
\end{array} \right.
\end{array}\)
Do đó \(a = 4,b = 3 \Rightarrow z = 4 + 3i\)
Khi đó \(w = 1 - z + {z^2} = 1 - \left( {4 + 3i} \right) + {\left( {4 + 3i} \right)^2} = 1 - 4 - 3i + 16 + 24i - 9 = 4 - 21i\)
Vậy \(\left| {\rm{w}} \right| = \sqrt {{4^2} + {{\left( { - 21} \right)}^2}} = \sqrt {457} \).
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Thái Nguyên lần 2