Cho số phức \(z\) thỏa mãn \((2i - 1)z = 4 - 3i.\) Điểm biểu diễn của số phức \(\overline z \) là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \((2i - 1)z = 4 - 3i\)
\( \Leftrightarrow z = \dfrac{{4 - 3i}}{{2i - 1}} = \dfrac{{\left( {4 - 3i} \right)\left( { - 1 - 2i} \right)}}{{\left( { - 1 + 2i} \right)\left( { - 1 - 2i} \right)}} = \dfrac{{ - 4 + 3i - 8i + 6{i^2}}}{{1 - 4{i^2}}} = \dfrac{{ - 10 - 5i}}{5} = - 2 - i\)
Suy ra \(\overline z = - 2 + i\) và có điểm biểu diễn là \(M\left( { - 2;1} \right)\).
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lương Văn Can
26/11/2024
68 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9