Cho số phức z thỏa mãn điều kiện \(\left| z+2 \right|=\left| z+2i \right|.\) Giá trị nhỏ nhất của biểu thức \(P=\left| z-1-2i \right|+\left| z-3-4i \right|+\left| z-5-6i \right|\) được viết dưới dạng \(\left( a+b\sqrt{17} \right)/\sqrt{2}\) với a,b là các hữu tỉ. Giá trị của a+b là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai* Gọi \(z=x+yi,\left( x,y\in \mathbb{R} \right).\) Từ giả thiết \(\left| z+2 \right|=\left| z+2i \right|,\) dẫn đến y=x. Khi đó z=x+xi.
* \(P=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x-2 \right)}^{2}}}+\sqrt{{{\left( x-3 \right)}^{2}}+{{\left( x-4 \right)}^{2}}}+\sqrt{{{\left( x-5 \right)}^{2}}+{{\left( x-6 \right)}^{2}}}.\)
* Sử dụng bất đẳng thức
\(\sqrt{{{a}^{2}}+{{b}^{2}}}+\sqrt{{{c}^{2}}+{{d}^{2}}}\ge \sqrt{{{\left( a+c \right)}^{2}}+{{\left( b+d \right)}^{2}}}.\)
Dấu bằng xảy ra khi và chỉ khi \(\frac{a}{c}=\frac{b}{d}.\) Ta có
\(\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x-2 \right)}^{2}}}+\sqrt{{{\left( x-5 \right)}^{2}}+{{\left( x-6 \right)}^{2}}}=\sqrt{{{\left( x-1 \right)}^{2}}+{{\left( x-2 \right)}^{2}}}+\sqrt{{{\left( 5-x \right)}^{2}}+{{\left( 6-x \right)}^{2}}}\)
\(\ge \sqrt{{{\left( x-1+6-x \right)}^{2}}+{{\left( x-2+5-x \right)}^{2}}}\)
\(\ge \sqrt{34}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(\frac{x-1}{6-x}=\frac{x-2}{5-x}\Leftrightarrow x=\frac{7}{2}.\)
* Mặt khác
\(\sqrt{{{\left( x-3 \right)}^{2}}+{{\left( x-4 \right)}^{2}}}=\sqrt{2{{x}^{2}}-14x+25}=\sqrt{2}\sqrt{{{\left( x-\frac{7}{2} \right)}^{2}}+\frac{1}{4}}\ge \frac{1}{\sqrt{2}}.\)
Dấy đẳng thức xảy ra khi và chỉ khi \(x=\frac{7}{2}.\)
* Từ hai trường hợp trên, ta thấy, giá trị nhỏ nhất của \(\left( P \right)\) là \(\frac{1+2\sqrt{17}}{\sqrt{2}}\). Khi đó a+b=3.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Đồng Đậu lần 2