Cho số phức z thỏa mãn |z-2i| \(\le\) |z-4i| và \(\left| z-3-3i \right|=1\). Giá trị lớn nhất của biểu thức \(P=\left| z-2 \right|\) là:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi M(x;y) là điểm biểu diễn số phức z ta có: \(\left| z-2i \right|\le \left| z-4i \right|\)
\(\Leftrightarrow {{x}^{2}}+{{(y-2)}^{2}}\le {{x}^{2}}+{{(y-4)}^{2}}\)
\(\Leftrightarrow y\le 3;\,\,\left| z-3-3i \right|=1\Leftrightarrow \) điểm M nằm trên đường tròn tâm I(3;3) và bán kính bằng 1.
Biểu thức \(P=\left| z-2 \right|=AM\) trong đó A(2;0), theo hình vẽ thì giá trị lớn nhất của \(P=\left| z-2 \right|\) đạt được khi M(4;3) nên \(\max P=\sqrt{{{(4-2)}^{2}}+{{(3-0)}^{2}}}=\sqrt{13}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trưng Vương lần 2
02/12/2024
71 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9