Cho \(x,y \in \left( {0;\frac{\pi }{2}} \right)\) thỏa mãn \(\cos 2x + \cos 2y + 2\sin \left( {x + y} \right) = 2.\) Tìm GTNN của
\(P = \frac{{{{\sin }^4}x}}{y} + \frac{{{{\cos }^4}y}}{x}\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(P = \frac{{{{\sin }^4}x}}{y} + \frac{{{{\cos }^4}y}}{x} \ge \frac{{{{\left( {{{\sin }^2}x + {{\cos }^2}y} \right)}^2}}}{{x + y}} \ge \frac{1}{{x + y}}\) (1)
Ta có: \(\cos 2x + \cos 2y + 2\sin (x + y) = 2 \Leftrightarrow 2cos\left( {x + y} \right).\cos \left( {x - y} \right) + 2\sin \left( {x + y} \right) = 2\)
\( \Leftrightarrow \cos \left( {x + y} \right).\cos \left( {x - y} \right) = 1 - \sin \left( {x + y} \right)\)
Mà \(1 - \sin \left( {x + y} \right) \ge 0,\forall x,y;\cos \left( {x - y} \right) > 0,\forall x,y \in \left( {0;\frac{\pi }{2}} \right) \Rightarrow \cos \left( {x + y} \right) \ge 0\)
\( \Rightarrow 0 < x + y \le \frac{\pi }{2} \Rightarrow \frac{1}{{x + y}} \ge \frac{2}{\pi }\) (2)
Từ (1), (2), suy ra: \(P \ge \frac{2}{\pi },\forall x,y \in \left( {0;\frac{\pi }{2}} \right)\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}
\frac{{{{\sin }^2}x}}{y} = \frac{{{{\cos }^2}y}}{x}\\
{\sin ^2}x + {\cos ^2}y = 1\\
x + y = \frac{\pi }{2}
\end{array} \right. \Rightarrow x = y = \frac{\pi }{4}\)
Vậy \({P_{\min }} = \frac{2}{\pi }\) khi và chỉ khi \(x = y = \frac{\pi }{4}.\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Hàn Thuyên - Bắc Ninh