Có bao nhiêu số nguyên \(x\) thoả mãn \(\left(4^x-5.2^{x+2}+64\right) \sqrt{2-\log (4 x)} \geq 0\).
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐiều kiện: \(\begin{cases} 2-\log(4x)\ge 0\\ 4x>0\end{cases}\Leftrightarrow 0\)
Giải (1): \(\log(4x)=2\Leftrightarrow 4x=10^2\Leftrightarrow x=25\text{(thỏa mãn)}\)
Giải (2): \(\left(2^x\right)^2-20.2^x+64\ge 0\Leftrightarrow 2^x\ge 16\) hoặc \(2^x\le 4\). Từ đó tìm được \(x\ge 4\) hoặc \(x\le 2\).
Kết hợp với điều kiện, ta có các giá trị nguyên thỏa mãn trong trường hợp này \(x\in \left\{1;2\right\}\cup \left\{4;5;6\dots 25\right\}\).
Vậy có 24 số nguyên \(x\) thỏa đề bài.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi minh họa tốt nghiệp THPT năm 2022 môn Toán
Bộ Giáo Dục và Đào Tạo
05/04/2022
602 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9