Có bao nhiêu số nguyên y, sao cho ứng với mỗi số nguyên y có tối đa 100 số nguyên x thỏa mãn \({{3}^{y-2x}}\ge {{\log }_{5}}\left( x+{{y}^{2}} \right)\)
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐiều kiện: \(x>-{{y}^{2}}\)
Xét hàm số \(f(x)={{3}^{y-2x}}-{{\log }_{5}}\left( x+{{y}^{2}} \right)\)
Ta có: \({{f}^{'}}(x)=-{{2.3}^{y-2x}}.\ln 3-\frac{1}{\left( x+{{y}^{2}} \right).\ln 5}<0\)
Bảng biến thiên
Từ bảng biến thiên ta có tập nghiệm của bất phương trình là \(\left( -{{y}^{2}};{{x}_{0}} \right]\). Để có tối đa 100 số nguyên x thì \(f(-{{y}^{2}}+101)<0\Leftrightarrow 2{{y}^{2}}+y-202-{{3}^{{{\log }_{5}}101}}<0\Leftrightarrow -10\le y\le 9\).
Vậy có 20 giá trị nguyên y.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9