Đặt điện áp xoay chiều \(u = {U_0}\cos \left( {100\pi t} \right)\,\,\left( V \right)\) vào hai đầu đoạn mạch \(AB\) nối tiếp gồm đoạn \(AM\) chứa cuộn cảm thuần có độ tự cảm \(L\) thay đổi được và đoạn mạch \(MB\) chứa điện trở thuần \(R\) nối tiếp với tụ điện \(C\). Khi thay đổi \(L\) đến các giá trị \({L_1},\,\,{L_2}\) và \({L_3}\) thì biểu thức điện áp trên đoạn mạch \(MB\) lần lượt là \({u_{MB1}} = {U_{01}}\cos \left( {100\pi t - \dfrac{\pi }{2}} \right)\,\,\left( V \right)\), \({u_{MB2}} = {U_{01}}\cos \left( {100\pi t - \dfrac{\pi }{3}} \right)\,\,\left( V \right)\) và \({U_{MB3}} = 320\cos \left( {100\pi t - \dfrac{{2\pi }}{3}} \right)\,\,\left( V \right)\). Giá trị của \({U_{01}}\) gần nhất với giá trị nào sau đây?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiNhận xét: R, ZC không đổi \( \Rightarrow {\varphi _{{u_{RC}}/i}} = const \Rightarrow \alpha = const\)
Trường hợp 1: L = L1, ta có:
\({\varphi _{{u_{MB1}}/u}} = - \dfrac{\pi }{2} \Rightarrow \dfrac{U}{{\sin \alpha }} = \dfrac{{{U_{MB}}}}{{\sin \beta }} \Rightarrow \dfrac{{{U_0}}}{{\sin \alpha }} = \dfrac{{{U_{01}}}}{{\sin \beta }} = \dfrac{{{U_{01}}}}{{\sin \left( {{{90}^0} - \alpha } \right)}}\)
Trường hợp 2: L = L2, ta có:
\({\varphi _{{u_{MB2}}/u}} = - \dfrac{\pi }{3} \Rightarrow \dfrac{{{U_0}}}{{\sin \alpha }} = \dfrac{{{U_{01}}}}{{\sin \left( {{{120}^0} - \alpha } \right)}}\)
Trường hợp 3: L = L3, ta có:
\({\varphi _{{u_{MB3}}}} = - \dfrac{{2\pi }}{3} \Rightarrow \dfrac{{{U_0}}}{{\sin \alpha }} = \dfrac{{320}}{{\sin \left( {{{60}^0} - \alpha } \right)}}\)
\(\begin{array}{l} \Rightarrow \dfrac{{{U_0}}}{{\sin \alpha }} = \dfrac{{{U_{01}}}}{{\sin \left( {{{90}^0} - \alpha } \right)}} = \dfrac{{{U_{01}}}}{{\sin \left( {{{120}^0} - \alpha } \right)}} = \dfrac{{320}}{{\sin \left( {{{60}^0} - \alpha } \right)}}\\ \Rightarrow \sin \left( {{{90}^0} - \alpha } \right) = \sin \left( {{{120}^0} - \alpha } \right)\\ \Rightarrow {90^0} - \alpha + {120^0} - \alpha = {180^0} \Rightarrow \alpha = {15^0}\\ \Rightarrow \dfrac{{{U_{01}}}}{{\sin \left( {{{90}^0} - {{15}^0}} \right)}} = \dfrac{{320}}{{\sin \left( {{{60}^0} - {{15}^0}} \right)}} \Rightarrow {U_{01}} = 437,128\,\,\left( V \right)\end{array}\)
Chọn C.
Đề thi thử THPT QG năm 2022 môn Vật Lý
Trường THPT Lý Chính Thắng