Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt ?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTXĐ: \(D = \mathbb{R}\)
\({x^4} - 3{x^2} + m \)
\({x^4} - 3{x^2} + m = 0 \)
\(\Leftrightarrow {x^4} - 3{x^2} = - m\)
\(\Leftrightarrow {x^4} - 3{x^2} - 3 = - m - 3\)
Số nghiệm của pt \({x^4} - 3{x^2} + m = 0\) chính là số giao điểm của đths \({x^4} - 3{x^2} - 3 = 0\) và đường thẳng \(y= -m - 3\)
Từ đồ thị hàm số \( \Rightarrow - m – 3 = 0 \Leftrightarrow m=0\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9