Giả sử \(m = - \frac{a}{b},{\rm{ }}a,b \in {\mathbb{Z}^ + },\left( {a,b} \right) = 1\) là giá trị thực của tham số \(m\) để đường thẳng \(d:\,y\, = \, - 3x\, + \,m\) cắt đồ thị hàm số \(y\, = \,\frac{{2x\, + \,1}}{{x\, - \,1}}\) \(\left( C \right)\) tại hai điểm phân biệt \(A,B\) sao cho trọng tâm tam giác \(OAB\) thuộc đường thẳng \(\Delta \,:\,x\, - \,2y\, - \,2\, = \,0\), với \(O\) là gốc tọa độ. Tính \(a + 2b.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình hoành độ giao điểm của \(d\) và \(\left( C \right)\) là:
\(\begin{array}{l}\;\;\;\;\frac{{2x + 1}}{{x - 1}} = \, - 3x\, + \,m,\,\left( {x \ne 1} \right) \Leftrightarrow 2x + 1 = \left( {x - 1} \right)\left( { - 3x + m} \right)\\ \Leftrightarrow 2x + 1 = - 3{x^2} + \left( {m + 3} \right)x - m \Leftrightarrow 3{x^2} - \left( {m + 1} \right)x + m + 1 = 0\,\,(*)\end{array}\)
Để \(d\) cắt \(\left( C \right)\) tại hai điểm phân biệt \(A,B\) thì (*) có 2 nghiệm phân biệt khác 1
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\{3.1^2} - \left( {m + 1} \right).1 + m + 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - 12\left( {m + 1} \right) > 0\\3 \ne 0\end{array} \right. \Leftrightarrow \left( {m + 1} \right)\left( {m - 11} \right) > 0 \Leftrightarrow \left[ \begin{array}{l}m < - 1\\m > 11\end{array} \right.\)
Giả sử \({x_1},{x_2}\) là nghiệm của (*) \( \Rightarrow {x_1} + {x_2} = \frac{{m + 1}}{3}\)
Tọa độ giao điểm \(A\left( {{x_1};{y_1}} \right),B\left( {{x_2};{y_2}} \right)\), do \(A,B \in d \Rightarrow \left\{ \begin{array}{l}{y_1} = - 3{x_1} + m\\{y_2} = - 3{x_2} + m\end{array} \right.\)
\( \Rightarrow {y_1} + {y_2} = - 3\left( {{x_1} + {x_2}} \right) + 2m = - 3.\frac{{m + 1}}{3} + 2m = m - 1\)
Tọa độ trọng tâm G của tam giác OAB: \(G\left( {\frac{{{x_1} + {x_2} + 0}}{3};\frac{{{y_1} + {y_2} + 0}}{3}} \right)\) hay \(G\left( {\frac{{m + 1}}{9};\frac{{m - 1}}{3}} \right)\)
Do \(G \in \Delta \,:\,x\, - \,2y\, - \,2\, = \,0 \Rightarrow \frac{{m + 1}}{9} - 2.\frac{{m - 1}}{3} - 2 = 0 \Leftrightarrow m + 1 - 6m + 6 - 18 = 0 \Leftrightarrow m = - \frac{{11}}{5}\)
\( \Rightarrow a = 11;\,\,b = 5 \Rightarrow a + 2b = 21\).
Chọn D.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Trần Nguyên Hãn