Giá trị lớn nhất của hàm số \(y = {x^4} - 3{x^2} + 2\) trên đoạn \(\left[ {0;3} \right]\) bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(y' = 4{x^3} - 6x \Rightarrow y' = 0 \Leftrightarrow 4{x^3} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\;\; \in \left[ {0;\;3} \right]\\x = \dfrac{{\sqrt 6 }}{2}\;\; \in \left[ {0;\;3} \right]\\x = - \dfrac{{\sqrt 6 }}{2}\;\;\; \notin \left[ {0;\;3} \right]\end{array} \right.\)
\( \Rightarrow \left\{ \begin{array}{l}y\left( 0 \right) = 2\\y\left( {\dfrac{{\sqrt 6 }}{2}} \right) = - \dfrac{1}{4}\\y\left( 3 \right) = 56\end{array} \right. \Rightarrow \mathop {Max}\limits_{\left[ {0;\;3} \right]} y = 56\;\;khi\;\;x = 3.\)
Chọn C.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9