Gọi S là tập hợp tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số \(y = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} \right|\) trên đoạn [0; 2] không vượt quá 30. Tổng giá trị các phần tử của tập hợp S bằng bao nhiêu?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(g\left( x \right) = \frac{1}{4}{x^4} - 14{x^2} + 48x\) trên đoạn [0;2]
Ta có \(g'\left( x \right) = {x^3} - 28x + 48.\)
Xét phương trình \(g'\left( x \right) = 0 \Leftrightarrow {x^3} - 28x + 48 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 2\,\left( n \right)\\ x = 4\,\left( l \right)\\ x = - 6\,\left( l \right) \end{array} \right.\)
Ta có \(g\left( 0 \right) = 0;g\left( 2 \right) = 44.\)
Do đó \(0 \le \frac{1}{4}{x^4} - 14{x^2} + 48x \le 44\)
\( \Leftrightarrow m - 30 \le \frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30 \le m + 14.\)
Khi đó \(\mathop {\max }\limits_{x \in \left[ {0;2} \right]} y = \max \left\{ {\left| {m - 30} \right|;\left| {m + 14} \right|} \right\}.\)
Xét các trường hợp sau: \(\left| {m - 30} \right| \ge \left| {m + 14} \right| \Leftrightarrow m \le 8.\,\,\,\left( 1 \right)\)
Khi đó \(\mathop {\max }\limits_{x \in \left[ {0;2} \right]} y = \left| {m - 30} \right|\), theo đề bài \(\left| {m - 30} \right| \le 30 \Leftrightarrow 0 \le m \le 60.\,\,\left( 2 \right)\)
Từ (1) và (2) ta được \(m \in \left[ {0;8} \right].\)
\(\left| {m - 30} \right| < \left| {m + 14} \right| \Leftrightarrow m > 8.\,\,\,\left( 3 \right)\)
Khi đó \(\mathop {\max }\limits_{x \in \left[ {0;2} \right]} y = \left| {m + 14} \right|,\) theo đề bài \(\left| {m + 14} \right| \le 30 \Leftrightarrow - 44 \le m \le 16.\,\,\left( 4 \right)\)
Từ (3) và (4) ta được \(m \in \left( {8;16} \right].\)
Vậy \(m \in \left[ {0;16} \right]\) và m nguyên nên \(m \in \left\{ {0;1;2;3;...;15;16} \right\}.\)
Khi đó \(0 + 1 + 2 + ... + 15 + 16 = 136.\)