Gọi \(x_1, x_2\) là hai nghiệm của phương trình \({2^x}{.5^{{x^2} - 2x}} = 1\). Khi đó tổng \(x_1+x_2\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\begin{array}{l}
{2^x}{.5^{{x^2} - 2x}} = 1 \Leftrightarrow {\log _5}\left( {{2^x}{{.5}^{{x^2} - 2x}}} \right) = {\log _5}1 \Leftrightarrow {\log _5}{2^x} + {\log _5}{5^{{x^2} - 2x}} = 0\\
\Leftrightarrow x{\log _5}2 + \left( {{x^2} - 2x} \right){\log _5}5 = 0 \Leftrightarrow x{\log _5}2 + {x^2} - 2x = 0\\
\Leftrightarrow x\left( {{{\log }_5}2 + x - 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x - 2 + {\log _5}2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = 2 - {\log _5}2
\end{array} \right.
\end{array}\)
Vậy tổng hai nghiệm \(0 + \left( {2 - {{\log }_5}2} \right) = 2 - {\log _5}2\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Thái Nguyên lần 2