Hỏi khi m thay đổi đồ thị (Cm) của hàm số \(y = (1 - 2m){x^4} + 3m{x^2} - m - 1\) đi qua bao nhiêu điểm cố định ?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M({x_0};{y_0})\) là điểm cố định cần tìm.
Ta có \({y_0} = (1 - 2m)x_0^4 + 3mx_0^2 - m - 1,\forall m\)
\( \Leftrightarrow (2x_0^4 - 3x_0^2 + 1)m + {y_0} - x_0^4 + 1 = 0,\forall m \Leftrightarrow \left\{ \begin{array}{l} 2x_0^4 - 3x_0^2 + 1 = 0\\ {y_0} - x_0^4 + 1 = 0 \end{array} \right.\)
⇔ \(\left\{ \begin{array}{l} {x_0} = - 1\\ {y_0} = 0 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} {x_0} = 1\\ {y_0} = 0 \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} {x_0} = - \frac{1}{{\sqrt 2 }}\\ {y_0} = - \frac{3}{4} \end{array} \right.\) hoặc \(\left\{ \begin{array}{l} {x_0} = \frac{1}{{\sqrt 2 }}\\ {y_0} = - \frac{3}{4} \end{array} \right.\).
Vậy đồ thị hàm số đã cho đi qua bốn điểm cố định.