Mặt cầu tiếp xúc với các cạnh của tứ diện đều \(ABCD\) cạnh \(a\) có bán kính là?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo tứ diện ABCD đều nên tâm mặt cầu tiếp xúc với 6 cạnh cũng trùng với tâm mặt cầu ngoại tiếp tứ diện.
Gọi H là tâm đường tròn ngoại tiếp tam giác BCD. Suy ra H chính là trọng tâm tam giác BCD.
Khi đó AH chính là trục đường tròn ngoài tiếp tam giác BCD.
Gọi K là trung điểm của AB.
Mặt phẳng trung trực của AB qua K cắt AH tại I chính là tâm mặt cầu ngoại tiếp tứ diện đều ABCD.
Ta có: \(r = IK\). Mặt khác \(\Delta AKI\) đồng dạng \(\Delta AHB\)
\(\begin{array}{l} \Rightarrow \dfrac{{AK}}{{AH}} = \dfrac{{AI}}{{AB}} = \dfrac{{IK}}{{HB}}\\ \Leftrightarrow \dfrac{{AB}}{{2AH}} = \dfrac{{IK}}{{HB}}\end{array}\)
Trong đó: \(AB = a,\,HB = \dfrac{{a\sqrt 3 }}{3}\)
\(AH = \sqrt {A{B^2} - H{B^2}} = \dfrac{{a\sqrt 6 }}{3}\)
\(\Rightarrow r = IK = \dfrac{{a\sqrt 2 }}{4}.\)
Chọn B.