Trong không gian với hệ toạ độ \(Oxyz\), gọi \(\left( \alpha \right)\)là mặt phẳng song song với mặt phẳng \(\left( \beta \right):2x - 4y + 4z + 3 = 0\) và cách điểm \(A\left( {2; - 3;4} \right)\) một khoảng \(k = 3\). Phương trình của mặt phẳng \(\left( \alpha \right)\) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiVì \(\left( \alpha \right)//\left( \beta \right)\)\( \Rightarrow \left( \alpha \right):2x - 4y + 4z + m = 0\)\(\left( {m \ne 3} \right)\)
Giả thiết có \(d\left( {A,\left( \alpha \right)} \right) = 3\)\( \Leftrightarrow \dfrac{{\left| {32 + m} \right|}}{6} = 3\)\( \Leftrightarrow \left[ \begin{array}{l}m = - 14\\m = - 50\end{array} \right.\)
Vậy \(\left( \alpha \right):x - 2y + 2z - 7 = 0\), \(\left( \alpha \right):x - 2y + 2z - 25 = 0\)