Một công ty cần sản xuất các sản phẩm bằng kim loại có dạng khối lăng trụ tam giác đều có thể tích bằng \(\sqrt[4]{3}\left( {{m^3}} \right)\) rồi sơn lại hai mặt đáy và hai mặt bên. Hỏi diện tích cần sơn mỗi sản phẩm nhỏ nhất bằng bao nhiêu mét vuông?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi cạnh đáy lăng trụ là \(a;\) chiều cao lăng trụ là \(h\) ta có thể tích lăng trụ đều \(ABC.A'B'C'\) là
\(V = h.{S_{ABC}} = h.\dfrac{{{a^2}\sqrt 3 }}{4}\) . Theo gt ta có \(\dfrac{{{a^2}h\sqrt 3 }}{4} = \sqrt[4]{3} \Rightarrow h = \dfrac{4}{{{a^2}\sqrt[4]{3}}}\)
Diện tích hai mặt đáy và hai mặt bên cần sơn là
\(\begin{array}{l}S = 2{S_{ABC}} + 2{S_{AA'C'C}} = 2.\dfrac{{{a^2}\sqrt 3 }}{4} + 2.a.\dfrac{4}{{{a^2}\sqrt[4]{3}}}\\ = 2.\dfrac{{{a^2}\sqrt 3 }}{4} + 2.\dfrac{4}{{a\sqrt[4]{3}}} = 2\left( {\dfrac{{{a^2}\sqrt 3 }}{4} + \dfrac{2}{{a\sqrt[4]{3}}} + \dfrac{2}{{a\sqrt[4]{3}}}} \right)\\\mathop \ge \limits^{Co - si} 2.3\sqrt[3]{{\dfrac{{{a^2}\sqrt 3 }}{4}.\dfrac{2}{{a\sqrt[4]{3}}}.\dfrac{2}{{a\sqrt[4]{3}}}}} = 6\end{array}\)
Dấu “=” xảy ra khi \(\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{2}{{a\sqrt[4]{3}}} \Leftrightarrow a = \dfrac{2}{{\sqrt[4]{3}}}\) .
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Hà Huy Tập