Một học sinh làm thực hành xác định số vòng dây của hai máy biến áp lí tưởng A và B có các duộn dây với số vòng dây (là số nguyên) lần lượt là N1A, N2A, N1B, N2B. Biết N2A = kN1A; N2B = 2kN1B; k > 1; N1A + N2A + N1B + N2B = 3100 vòng và trong bốn cuộn dây có hai cuộn có số vòng dây đều bằng N. Dùng kết hợp hai máy biến áp này thì có thể tăng điện áp hiệu dụng U thành 18U hoặc 2U. Số vòng dây N là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\frac{{{N_{2A}}}}{{{N_{1A}}}} = k;\frac{{{N_{2B}}}}{{{N_{1B}}}} = 2k\)
Có hai khả năng
Trường hợp 1:
\(\begin{array}{l} {N_{2A}} = {N_{1B}} = N\\ \Rightarrow {N_{1B}} = \frac{N}{k};{N_{2B}} = 2kN\\ \Rightarrow {N_{1A}} + {N_{2A}} + {N_{1B}} + {N_{2B}} = 2N + \frac{N}{k} + 2kN = 3100\\ \Rightarrow \left( {2{k^2} + 2k + 1} \right)N = 3100k\\ Khi\,\,{U_{1A}} = U\\ \Rightarrow {U_{2A}} = kU;{U_{1B}} = {U_{2A}} = kU\\ \Rightarrow {U_{2B}} = 2k{U_{1B}} = 2{k^2}U = 18\\ \Rightarrow k = 3\\ \Rightarrow N = 372 \end{array}\)
Nếu : \({U_{2B}} = 2U \Rightarrow k = 1 \Rightarrow N = 620\)
Trường hợp 2:
\(\begin{array}{l} {N_{1A}} = {N_{2B}} = N\\ \Rightarrow {N_{1B}} = \frac{N}{{2k}};{N_{2A}} = kN\\ \Rightarrow {N_{1A}} + {N_{2A}} + {N_{1B}} + {N_{2B}} = 2N + \frac{N}{{2k}} + kN = 3100\\ \Rightarrow \left( {2{k^2} + 4k + 1} \right)N = 6200k\\ \Rightarrow {U_{2B}} = 2k{U_{1B}} = 2{k^2}U = 18U\\ \Rightarrow k = 3\\ \Rightarrow N = 600 \end{array}\)
Đề thi thử tốt nghiệp THPT QG 2020 môn Vật lý
Trường THPT Thoại Ngọc Hầu