Một khối lăng trụ tam giác có đáy là tam giác đều cạnh 3, cạnh bên bằng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmamaaka % aabaGaaG4maaWcbeaaaaa!3788! 2\sqrt 3 \) và tạo với mặt phẳng đáy một góc \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaic % dacqGHWcaScaGGUaaaaa!3A08! 30^\circ .\) Khi đó thể tích khối lăng trụ là?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiKẻ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaafa % GaamisaiabgwQiEnaabmaabaGaamyqaiaadkeacaWGdbaacaGLOaGa % ayzkaaaaaa!3D23! C'H \bot \left( {ABC} \right)\) tại \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiabgk % DiEpaaHaaabaWaaeWaaeaacaWGdbGabm4qayaafaGaai4oamaabmaa % baGaamyqaiaadkeacaWGdbaacaGLOaGaayzkaaaacaGLOaGaayzkaa % aacaGLcmaacqGH9aqpdaqiaaqaaiqadoeagaqbaiaadoeacaWGibaa % caGLcmaacaGGUaaaaa!4684! H \Rightarrow \widehat {\left( {CC';\left( {ABC} \right)} \right)} = \widehat {C'CH}.\)
Bài ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaada % qadaqaaiaadoeaceWGdbGbauaacaGG7aWaaeWaaeaacaWGbbGaamOq % aiaadoeaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawkWaaiabg2 % da9iaaiodacaaIWaGaeyiSaaRaeyO0H49aaecaaeaaceWGdbGbauaa % caWGdbGaamisaaGaayPadaGaeyypa0JaaG4maiaaicdacqGHWcaSaa % a!4CD1! \widehat {\left( {CC';\left( {ABC} \right)} \right)} = 30^\circ \Rightarrow \widehat {C'CH} = 30^\circ \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H4Taci % 4CaiaacMgacaGGUbGaaG4maiaaicdacqGHWcaScqGH9aqpdaWcaaqa % aiqadoeagaqbaiaadIeaaeaacaWGdbGabm4qayaafaaaaiabg2da9m % aalaaabaGaaGymaaqaaiaaikdaaaGaeyO0H4Tabm4qayaafaGaamis % aiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaam4qaiqadoeaga % qbaiabg2da9maalaaabaGaaGOmamaakaaabaGaaG4maaWcbeaaaOqa % aiaaikdaaaGaeyypa0ZaaOaaaeaacaaIZaaaleqaaOGaaiOlaaaa!539C! \Rightarrow \sin 30^\circ = \frac{{C'H}}{{CC'}} = \frac{1}{2} \Rightarrow C'H = \frac{1}{2}CC' = \frac{{2\sqrt 3 }}{2} = \sqrt 3 .\)
Do đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvamaaBa % aaleaacaWGbbGaamOqaiaadoeacaGGUaGabmyqayaafaGabmOqayaa % faGabm4qayaafaaabeaakiabg2da9iqadoeagaqbaiaadIeacaGGUa % Gaam4uamaaBaaaleaacaWGbbGaamOqaiaadoeaaeqaaaaa!4336! {V_{ABC.A'B'C'}} = C'H.{S_{ABC}}\) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Jabm % 4qayaafaGaamisaiaac6cadaWcaaqaaiaaigdaaeaacaaIYaaaaiaa % dgeacaWGcbGaaiOlaiaadgeacaWGdbGaaiOlaiGacohacaGGPbGaai % OBaiaaiAdacaaIWaGaeyiSaaRaeyypa0ZaaOaaaeaacaaIZaaaleqa % aOGaaiOlamaalaaabaGaaGymaaqaaiaaikdaaaGaaiOlaiaaiodaca % GGUaGaaG4maiaac6cadaWcaaqaamaakaaabaGaaG4maaWcbeaaaOqa % aiaaikdaaaGaeyypa0ZaaSaaaeaacaaIYaGaaG4naaqaaiaaisdaaa % aaaa!5240! = C'H.\frac{1}{2}AB.AC.\sin 60^\circ = \sqrt 3 .\frac{1}{2}.3.3.\frac{{\sqrt 3 }}{2} = \frac{{27}}{4}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 1