Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right.\) là:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(\left\{ \begin{array}{l}x + 2y = 1 + i\\3x + iy = 2 - 3i\end{array} \right. \)
\(\Leftrightarrow \left\{ \begin{array}{l}x = 1 + i - 2y{\rm{ (1)}}\\3x + iy = 2 - 3i{\rm{ (2)}}\end{array} \right.\)
Thay (1) vào (2) ta được:
\(\begin{array}{l}3(1 + i - 2y) + iy = 2 - 3i\\ \Leftrightarrow ( - 6 + i)y = - 1 - 6i\\ \Leftrightarrow y = \dfrac{{ - 1 - 6i}}{{ - 6 + i}}\\ \Leftrightarrow y = \dfrac{{\left( { - 1 - 6i} \right)\left( { - 6 - i} \right)}}{{36 - {i^2}}} = i\end{array}\)
Thay y = i vào (1) \( \Rightarrow x = 1 - i\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9