Số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) với đường thẳng y = 2x + 3 là
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiXét hệ \(\left\{ \begin{array}{l} y = \frac{{2x + 1}}{{x - 1}}\\ y = 2x + 3 \end{array} \right..\)
\( \Rightarrow \frac{{2x + 1}}{{x - 1}} = 2x + 3 \Rightarrow \left\{ \begin{array}{l} x \ne 1\\ 2x + 1 = 2{x^2} + x - 3 \end{array} \right. \Rightarrow \left[ \begin{array}{l} x = \frac{{1 + \sqrt {33} }}{4}\\ x = \frac{{1 - \sqrt {33} }}{4} \end{array} \right..\)
Vậy số giao điểm của đồ thị hàm số \(y = \frac{{2x + 1}}{{x - 1}}\) và y = 2x + 3 là 2
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9