Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐKXĐ: \(\left\{ \begin{array}{l} {x^2} + 4x > 0\\ 2x + 3 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \left[ \begin{array}{l} x > 0\\ x < - 4 \end{array} \right.\\ x > \frac{{ - 3}}{2} \end{array} \right. \Leftrightarrow x > 0\)
\({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0 \Leftrightarrow {\log _3}\left( {{x^2} + 4x} \right) - {\log _3}\left( {2x + 3} \right) = 0\)
\( \Leftrightarrow {\log _3}\frac{{{x^2} + 4x}}{{2x + 3}} = 0 \Leftrightarrow \frac{{{x^2} + 4x}}{{2x + 3}} = 1 \Leftrightarrow {x^2} + 4x = 2x + 3\)
\( \Leftrightarrow {x^2} + 2x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l} x = 1\left( {tm} \right)\\ x = - 3\left( {ktm} \right) \end{array} \right. \Rightarrow S = \left\{ 1 \right\}\)
Vậy phương trình đã cho có duy nhất 1 nghiệm.