Sử dụng mảnh inox hình chữ nhật ABCD có diện tích bằng \(1{{\operatorname{m}}^{2}}\) và cạnh \(BC=x\left( \operatorname{m} \right)\) để làm một thùng đựng nước có đáy, không có nắp theo quy trình như sau: Chia hình chữ nhật ABCD thành 2 hình chữ nhật ADNM và BCNM, trong đó phần hình chữ nhật ADNM được gò thành phần xung quanh hình trụ có chiều cao bằng AM; phần hình chữ nhật BCNM được cắt ra một hình tròn để làm đáy của hình trụ trên (phần inox thừa được bỏ đi) Tính gần đúng giá trị x để thùng nước trên có thể tích lớn nhất (coi như các mép nối không đáng kể).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(AB.BC=1\Rightarrow AB=\frac{1}{BC}=\frac{1}{x}\left( \operatorname{m} \right)\).
Gọi \(r\left( \operatorname{m} \right)\) là bán kính đáy hình trụ inox gò được, ta có chu vi hình tròn đáy bằng \(BC=x\left( \operatorname{m} \right).\) Do đó \(2\pi r=x\Leftrightarrow r=\frac{x}{2\pi }\left( \operatorname{m} \right)\).
Như vậy \(BM=2r=\frac{x}{\pi }\Rightarrow AM=AB-BM=\frac{1}{x}-\frac{x}{\pi }\left( \operatorname{m} \right)\).
Thể tích khối trụ inox gò được là \(V=\pi {{r}^{2}}h=\pi .{{\left( \frac{x}{2\pi } \right)}^{2}}.\left( \frac{1}{x}-\frac{x}{\pi } \right)=\frac{1}{4{{\pi }^{2}}}x\left( \pi -{{x}^{2}} \right)\)
Xét hàm số \(f\left( x \right)=x\left( \pi -{{x}^{2}} \right)\) với x>0.
\({f}'\left( x \right)=\pi -3{{x}^{2}}; {f}'\left( x \right)=0\Rightarrow x=\sqrt{\frac{\pi }{3}}\);
\({f}'\left( x \right)>0\Leftrightarrow x\in \left( 0;\sqrt{\frac{\pi }{3}} \right)\) và \({f}'\left( x \right)<0\Leftrightarrow x\in \left( \sqrt{\frac{\pi }{3}};+\infty \right)\)
Bởi vậy \(f\left( x \right)\) đồng biến trên khoảng \(\left( 0;\sqrt{\frac{\pi }{3}} \right)\) và nghịch biến trên khoảng \(\left( \sqrt{\frac{\pi }{3}};+\infty \right)\)
Suy ra \(\underset{\left( 0;+\infty \right)}{\mathop{\max }}\,f\left( x \right)=f\left( \sqrt{\frac{\pi }{3}} \right)=\frac{2\pi \sqrt{3\pi }}{9}\Rightarrow {{V}_{\max }}\Leftrightarrow f{{\left( x \right)}_{\max }}\Leftrightarrow x=\sqrt{\frac{\pi }{3}}\approx 1,02\left( \operatorname{m} \right)\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Gò Vấp lần 2