Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số \(y = \dfrac{{{x^3}}}{ 3} - 2{x^2} + 3x - 5\).
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(TXD:D = R\)
\(\begin{array}{l}y = \dfrac{{{x^3}}}{3} - 2{x^2} + 3x - 5\\y' = {x^2} - 4x + 3\\y' = 0 \Leftrightarrow {x^2} - 4x + 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\end{array}\)
Từ BBT xct=3, yct=-5
\(y'\left( 3 \right) = 0\) nên phương trình tiếp tuyến tại \(\left( {3; - 5} \right)\) là:
\(y = 0\left( {x + 3} \right) - 5\) hay \(y = - 5\)
Đường thẳng này song song với trục hoành.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9