Tìm giá trị thực của tham số \(m\) để phương trình \(\log _3^2x - m{\log _3}x + 2m - 7 = 0\) có hai nghiệm thực \({x_1},{x_2}\) thỏa mãn \({x_1}{x_2} = 81.\)
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐiều kiện: \(x > 0\)
Đặt \(t = {\log _3}x\)
Phương trình đã cho tương đương với: \({t^2} - mt + 2m - 7 = 0\) , (1)
Gọi \({t_1},{t_2}\) là nghiệm của (1), theo Vi-et: \({t_1} + {t_2} = m \Leftrightarrow {\log _3}{x_1} + {\log _3}{x_2} = m\) , (2)
Mà \({x_1}{x_2} = 81\)
Khi đó: \((2) \Leftrightarrow {\log _3}{x_1}{x_2} = m \Leftrightarrow {\log _3}81 = m \Leftrightarrow m = 4.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9