Tìm tất cả giá trị của tham số m để phương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\) có ba nghiệm phân biệt?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình \({{x}^{3}}-3{{x}^{2}}-{{m}^{3}}+3{{m}^{2}}=0\Leftrightarrow {{m}^{3}}-3{{m}^{2}}={{x}^{3}}-3{{x}^{2}}=f\left( x \right).\)
Ta có \(f'\left( x \right)=3{{x}^{2}}-6x.\) Xét \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 2 \end{array} \right..\)
Bảng biến thiên
Dựa vào bảng biến thiên, để phương trình đã cho có ba nghiệm phân biệt khi và chỉ khi
\( - 4 < {m^3} - 3{m^2} < 0 \Leftrightarrow \left\{ \begin{array}{l} {m^3} - 3{m^2} + 4 > 0\\ {m^3} - 3{m^2} < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m,m \ne 2\\ m < 3,m \ne 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 1 < m < 3\\ m \ne 0 \wedge m \ne 2 \end{array} \right..\)
Vậy \(\left\{ \begin{array}{l} - 1 < m < 3\\ m \ne 0 \wedge m \ne 2 \end{array} \right.\) thỏa yêu cầu bài toán.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Lương Tài lần 3