Tìm tất cả giá trị thực của tham số \(m\) để bất phương trình\(\left( {{x^2} - 1} \right)\left( {x - 1} \right){x^3} + {\left( {{x^2} - x} \right)^2}\left( {2 - m} \right) + \left( {{x^2} - 1} \right)\left( {x - 1} \right) \ge 0\,\,\forall x \in \mathbb{R}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\begin{array}{l}\left( {{x^2} - 1} \right)\left( {x - 1} \right){x^3} + {\left( {{x^2} - x} \right)^2}\left( {2 - m} \right) + \left( {{x^2} - 1} \right)\left( {x - 1} \right) \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {\left( {x - 1} \right)^2}\left( {x + 1} \right){x^3} + {\left( {x - 1} \right)^2}{x^2}\left( {2 - m} \right) + {\left( {x - 1} \right)^2}\left( {x + 1} \right) \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {\left( {x - 1} \right)^2}\left[ {{x^4} + {x^3} + \left( {2 - m} \right){x^2} + x + 1} \right] \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow {x^4} + {x^3} + \left( {2 - m} \right){x^2} + x + 1\,\,\forall x \in \mathbb{R}\end{array}\)
+) Với \(x = 0\) ta có: \(1 \ge 0\,\,\forall x \in \mathbb{R}\) (luôn đúng) \( \Rightarrow x = 0\) là 1 nghiệm của bất phương trình.
+) Với \(x \ne 0\). Chia cả 2 vế cho \({x^2}\) ta có :
\(\begin{array}{l}pt:\,\,{x^2} + x + \left( {2 - m} \right) + \dfrac{1}{x} + \dfrac{1}{{{x^2}}} \ge 0\,\,\forall x \in \mathbb{R}\\ \Leftrightarrow m - 2 \le \left( {{x^2} + \dfrac{1}{{{x^2}}}} \right) + \left( {x + \dfrac{1}{x}} \right)\,\,\,\,\forall x \in \mathbb{R}\end{array}\)
Đặt \(t = x + \dfrac{1}{x}\,\,\left( {\left| t \right| \ge 2} \right) \Rightarrow {t^2} = {x^2} + \dfrac{1}{{{x^2}}} + 2 \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = {t^2} - 2\).
Khi đó phương trình trở thành \(m - 2 \le {t^2} - 2 + t = f\left( t \right)\,\,\forall \left| t \right| \ge 2 \Leftrightarrow m - 2 \le \mathop {\min }\limits_{\left| t \right| \ge 2} f\left( t \right)\).
Xét hàm số \(f\left( t \right) = {t^2} + t - 2\) với \(\left| t \right| \ge 2\) ta có : \(f'\left( t \right) = 2t + 1 = 0 \Leftrightarrow t = - \dfrac{1}{2}\)
BBT:
\( \Rightarrow m - 2 \le 0 \Leftrightarrow m \le 2\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Nguyễn Thái Học