Tìm tất cả giá trị thực m để đồ thị của hàm số \(y = {x^3} - (3m + 1){x^2} + (5m + 4)x - 8\) cắt trục hoành tại \(3\)điểm phân biệt có hoành độ lập thành một cấp số nhân.
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(a = 1,d = - 8 \Rightarrow {x_2} = \sqrt[3]{{ - \frac{d}{a}}} = 2\)
\({x_2} = 2\)thì có: \({2^3} - (3m + 1){2^2} + (5m + 4)2 - 8 = 0 \Rightarrow m = 2\)
Với \(m = 2\) thì \({x^3} - 7{x^2} + 14x - 8 = 0 \Leftrightarrow (x - 2)({x^2} - 5x + 4) = 0 \Leftrightarrow x = 2,x = 1,x = 4\)
Vậy, \(x \in \left\{ {1;2;4} \right\}\) lập cấp số nhân.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2018
Trường THPT Lê Hồng Phong
03/12/2024
6 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9