Tính tổng các giá trị nguyên của hàm số m trên \(\left[ -20;20 \right]\) để hàm số \(y=\frac{\sin x+m}{\sin x-1}\) nghịch biến trên khoảng \(\left( \frac{\pi }{2};\pi \right).\)
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiĐặt \(t=\sin x,t\in \left( 0;1 \right).\) Khi đó hàm số trở thành \(y=\frac{t+m}{t-1}.\)
Ta có \(y'=\frac{-1-m}{{{\left( t-1 \right)}^{2}}}.\) Do đó hàm số nghịch biến trên \(\left( 0;1 \right)\) khi và chỉ khi \(y'>0\Leftrightarrow -1-m>0\Leftrightarrow m<-1.\) Vì m nguyên trên \(\left[ -20;20 \right]\) nên \(m\in \left\{ -20;...;-3;-2 \right\}.\)
Khi đó \(-20-19-...-3-2=-209.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Quang Hà lần 3
10/11/2024
211 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9