Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có đỉnh \(B( - 12;1)\), đường phân giác trong góc A có phương trình \(d:x + 2y - 5 = 0\). \(G\left( {\dfrac{1}{3};\dfrac{2}{3}} \right)\) là trọng tâm tam giác ABC. Đường thẳng BC qua điểm nào sau đây.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi M là trung điểm của AC, ta có \(\overrightarrow {BG} = 2\overrightarrow {GM} \Rightarrow \left\{ \begin{array}{l}\dfrac{{37}}{3} = 2\left( {{x_M} - \dfrac{1}{3}} \right)\\\dfrac{{ - 1}}{3} = 2\left( {{y_M} - \dfrac{2}{3}} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_M} = \dfrac{{13}}{2}\\{y_M} = \dfrac{1}{2}\end{array} \right. \Rightarrow M\left( {\dfrac{{13}}{2};\dfrac{1}{2}} \right)\).
Gọi B’ là điểm đối xứng với B qua đường thẳng \(\left( d \right):\,\,x + 2y - 5 = 0 \Rightarrow B' \in AC\).
Gọi d’ là đường thẳng qua B và vuông góc với (d) \( \Rightarrow \) Phương trình (d’) : \(2x - y + 25 = 0\).
Gọi \(H = \left( {d'} \right) \cap \left( d \right) \Rightarrow H\left( { - 9;7} \right)\) là trung điểm của BB’ \( \Rightarrow B'\left( { - 6;13} \right)\).
Phương trình đường thẳng AC đi qua hai điểm B’, M là \(\dfrac{{x - \dfrac{{13}}{2}}}{{ - 6 - \dfrac{{13}}{2}}} = \dfrac{{y - \dfrac{1}{2}}}{{13 - \dfrac{1}{2}}} \Leftrightarrow \dfrac{{25}}{2}\left( {x - \dfrac{{13}}{2}} \right) = \dfrac{{ - 25}}{2}\left( {y - \dfrac{1}{2}} \right) \Leftrightarrow x - \dfrac{{13}}{2} = - y + \dfrac{1}{2} \Leftrightarrow x + y - 7 = 0\).
\(A = d \cap AC \Rightarrow A\left( {9; - 2} \right)\). M là trung điểm của AC \( \Rightarrow C\left( {4;3} \right)\).
\( \Rightarrow \) Phương trình đường thẳng BC là \(\dfrac{{x + 12}}{{4 + 12}} = \dfrac{{y - 1}}{{3 - 1}} \Leftrightarrow x - 8y + 20 = 0\).
Dựa vào các đáp án ta thấy BC đi qua điểm \(\left( {4;3} \right)\).
Chọn D.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Thanh Xuân