Xét tích phân \(\int\limits_0^{\dfrac{x}{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \). Thực hiện phép đổi biến t = cosx, ta có thể đưa I về dạng nào sau đây ?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t = \cos x\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \to t = 1\\x = \dfrac{\pi }{3} \to t = \dfrac{1}{2}\end{array} \right.\)
Khi đó ta có: \(\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\sin 2x}}{{1 + \cos x}}\,dx} \)
\(= \int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{2\sin x.\cos x}}{{1 + \cos x}}\,dx} \)
\(= - 2\int\limits_0^{\dfrac{\pi }{3}} {\dfrac{{\cos x}}{{1 + \cos x}}} \,d\left( {\cos x} \right)\)
\( = - 2\int\limits_1^{\dfrac{1}{2}} {\dfrac{t}{{1 + t}}\,dt} \)
\(= \int\limits_{\dfrac{1}{2}}^1 {\dfrac{{2t}}{{t + 1}}\,dt} \)
Chọn đáp án A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Ngô Thời Nhiệm