Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Đồng Đậu lần 1
-
Câu 1:
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có đồ thị như hình vẽ dưới đây. Nhận xét nào đúng về hàm số \(g\left( x \right) = {f^2}\left( x \right)\)?
-
Câu 2:
Tập xác định của hàm số \(y = \sqrt { - {x^2} + 2x + 3} \) là:
-
Câu 3:
Cho hình lăng trụ ABC.A’B’C’. Gọi I, J, K lần lượt là trọng tâm tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)?
-
Câu 4:
Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)\). Hàm số \(y=f'(x)\) liên tục trên tập số thực và có đồ thị như hình vẽ. Biết \(f\left( { - 1} \right) = \frac{{13}}{4},\,f\left( 2 \right) = 6\). Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(g\left( x \right) = {f^3}\left( x \right) - 3f\left( x \right)\) trên \([-1;2]\) bằng:
-
Câu 5:
Cho hình chóp S.ABCD, gọi M, N lần lượt là trung điểm của SA, SC. Tìm mệnh đề đúng.
-
Câu 6:
Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm mệnh đề đúng.
-
Câu 7:
Cho một đa giác lồi (H) có 10 cạnh. Hỏi có bao nhiêu tam giác mà ba đỉnh của nó là ba đỉnh của (H), nhưng ba cạnh không phải ba cạnh của (H)?
-
Câu 8:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A (2;1), đường cao BH có phương trình \(x - 3y - 7 = 0\) và trung tuyến CM có phương trình \(x+y+1=0\). Tìm tọa độ đỉnh C?
-
Câu 9:
Cho hàm số \(y=f(x)\) có đạo hàm trên R và có đồ thị như hình vẽ bên. Hỏi đồ thị của hàm số \(y = {f^2}\left( x \right)\) có bao nhiêu điểm cực đại, cực tiểu?
-
Câu 10:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = - \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {4m - 8} \right)x + 2\) nghịch biến trên toàn trục số?
-
Câu 11:
Giá trị lớn nhất của hàm số \(y = x - \frac{1}{x}\) trên \(\left( {0;3} \right]\) bằng:
-
Câu 12:
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình vẽ bên. Mệnh đề nào dưới đây đúng?
-
Câu 13:
Biết tập nghiệm của bất phương trình \(x - \sqrt {2x + 7} \le 4\) là \(\left[ {a;b} \right]\). Tính giá trị của biểu thức \(P = 2a + b\).
-
Câu 14:
Cho hàm số đa thức bậc ba \(y=f(x)\) có đồ thị như hình bên. Tìm tất cả các giá trị của tham số m để hàm số \(y = \left| {f\left( x \right) + m} \right|\) có ba điểm cực trị.
-
Câu 15:
Số điểm biểu diễn tập nghiệm của phương trình \({\sin ^3}x - 3{\sin ^2}x + 2\sin x = 0\) trên đường tròn lượng giác là:
-
Câu 16:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 3a, SA vuông góc với đáy, SB = 5a. Tính sin của góc giữa cạnh SC và mặt đáy (ABCD).
-
Câu 17:
Hàm số nào dưới đây nghịch biến trên toàn trục số?
-
Câu 18:
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với mặt phẳng đáy. Mệnh đề nào sau đây đúng?
-
Câu 19:
Tìm tọa độ tâm I và bán kính R của đường tròn (C): \({x^2} + {y^2} - 2x + 4y + 1 = 0\).
-
Câu 20:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \frac{{mx + 10}}{{2x + m}}\) nghịch biến trên khoảng \(\left( {0;2} \right)\)?
-
Câu 21:
Đồ thị của hàm số \(y = \frac{{x + 2}}{{3 - x}}\) có bao nhiêu đường tiệm cận?
-
Câu 22:
Hàm số \(y = - \frac{1}{4}{x^4} - 2{x^2} + 2\) có bao nhiêu điểm cực trị?
-
Câu 23:
Hàm số \(y = \frac{x}{{{x^2} + 1}}\) có giá trị lớn nhất là M, giá trị nhỏ nhất là m. Tính giá trị biểu thức \(P = {M^2} + {m^2}\).
-
Câu 24:
Tìm tất cả các giá trị của tham số m để phương trình \({x^2} + mx + 4 = 0\) có nghiệm.
-
Câu 25:
Hàm số \(y = {x^3} - 9{x^2} + 1\) có hai điểm cực trị là \({x_1},\,{x_2}\). Tính \(x_1+ x_2\).
-
Câu 26:
Số nghiệm của phương trình \(\frac{{\sin 3x}}{{1 - \cos x}} = 0\) trên đoạn \(\left[ {0;\pi } \right]\) là:
-
Câu 27:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, I là trung điểm của AB, hình chiếu S lên mặt đáy là trung điểm H của CI, góc giữa SA và đáy là \(45^0\). Khoảng cách giữa SA và CI bằng:
-
Câu 28:
Tìm tất cả các giá trị của tham số m để hàm số \(y = {x^3} - 3{x^2} + mx + 1\) có hai điểm cực trị.
-
Câu 29:
Trong mặt phẳng Oxy, cho đường thẳng d có phương trình \(x+y-1=0\) và đường tròn \(\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 1\). Ảnh của đường thẳng d qua phép tịnh tiến theo véc tơ \(\overrightarrow v = \left( {4;0} \right)\) cắt đường tròn (C) tại hai điểm \(A\left( {{x_1};{y_1}} \right)\) và \(B\left( {{x_2};{y_2}} \right)\). Giá trị \({x_1} + {x_2}\) bằng:
-
Câu 30:
Tìm m để hàm số \(y = \frac{1}{{\sqrt {x - m} }} + \sqrt { - x + 2m + 6} \) xác định trên (-1;0):
-
Câu 31:
Giá trị lớn nhất của hàm số \(y = \sqrt {5 - 4x} \) trên đoạn \(\left[ { - 1;1} \right]\) bằng:
-
Câu 32:
Hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 2\) đồng biến trên khoảng nào dưới đây?
-
Câu 33:
Với giá trị nào của m thì hàm số \(y = {x^3} - 6{x^2} + 9x + m\) có giá trị lớn nhất trên [0;2] bằng - 4?
-
Câu 34:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}\) có ba đường tiệm cận.
-
Câu 35:
Tìm tất cả các giá trị của tham số m để phương trình \({x^2} - m\sqrt {{x^2} + 1} + m + 4 = 0\) có bốn nghiệm phân biệt.
-
Câu 36:
Cho tam giác đều ABC có cạnh 8 cm. Dựng hình chữ nhật MNPQ với cạnh MN nằm trên cạnh BC và hai đỉnh P, Q lần lượt nằm trên cạnh AC, AB của tam giác. Tính BM sao cho hình chữ nhật MNPQ có diện tích lớn nhất.
-
Câu 37:
Thể tích của khối chóp có diện tích mặt đáy bằng B, chiều cao bằng h được tính bởi công thức:
-
Câu 38:
Tâm đối xứng của đồ thị hàm số \(y = \frac{{1 + 4x}}{{1 + x}}\) là:
-
Câu 39:
Đồ thị hình bên là của hàm số nào?
-
Câu 40:
Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y = \frac{{4x - 5}}{{x - m}}\) có tiệm cận đứng nằm bên phải trục tung.
-
Câu 41:
Từ các chữ số 1, 2, 3, 4, 5, 6. Có thể lập được bao nhiêu số có 3 chữ số khác nhau?
-
Câu 42:
Cho hàm số \(y = f\left( x \right)\) liên tục trên R và có đồ thị như hình bên. Phương trình \(f\left( x \right) = \pi \) có bao nhiêu nghiệm thực phân biệt?
-
Câu 43:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2}\left( {x + 1} \right)\). Hỏi hàm số có bao nhiêu điểm cực trị?
-
Câu 44:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên \(SA \bot \left( {ABCD} \right)\) và \(SA = a\sqrt 3 \). Khi đó, thể tích của khối chóp bằng:
-
Câu 45:
Trong các mệnh đề sau, mệnh đề nào sai?
-
Câu 46:
Khối đa diện đều loại {3;4} có số đỉnh, số cạnh và số mặt tương ứng là:
-
Câu 47:
Cho hàm số \(y = \frac{{x + 2}}{{x - 1}}\). Mệnh đề nào dưới đây đúng?
-
Câu 48:
Hai đội A và B thi đấu trận chung kết bóng chuyền nữ chào mừng ngày 20 – 10 (trận chung kết tối đa 5 hiệp). Đội nào thắng 3 hiệp trước thì thắng trận. Xác suất đội A thắng mỗi hiệp là 0,4 (không có hòa). Tính xác suất P để đội A thắng trận.
-
Câu 49:
Khối tứ diện đều có bao nhiêu mặt phẳng đối xứng?
-
Câu 50:
Tìm tất cả các giá trị của m để đồ thị hàm số \(y = {x^4} - 2{m^2}{x^2} + 1\) có ba điểm cực trị là ba đỉnh của một tam giác vuông cân.