Cho hình vuông ABCD cạnh \(a\) trên đường thẳng vuông góc với (ABCD) tại A ta lấy điểm S di động. Hình chiếu vuông góc của A lên SB, SD lần lượt là H, K. Thể tích lớn nhất của tứ diện ACHK bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTham khảo hình vẽ. Ta sẽ sử dụng công thức \(V = \frac{1}{6}a.b.d\left( {a,b} \right).\sin \left( {a,b} \right).\)
Đặt \(SA = x\,\,\left( {x > 0} \right).\) Tính được \(KH = \frac{{{x^2}a\sqrt 2 }}{{{a^2} + {x^2}}},IH = \frac{{{a^2}x}}{{{a^2} + {x^2}}}.\)
Chứng minh được \(HI = d\left( {KH,AC} \right)\) và \(AC \bot HK.\)
Khi đó \({V_{ACHK}} = \frac{1}{6}AC.KH.HI = \frac{1}{6}.a\sqrt 2 .\frac{{{x^2}a\sqrt 2 }}{{{a^2} + {x^2}}}.\frac{{{a^2}x}}{{{a^2} + {x^2}}} = \frac{{{a^4}}}{3}.\frac{{{x^3}}}{{{{\left( {{a^2} + {x^2}} \right)}^2}}}.\)
Xét hàm \(f\left( x \right) = \frac{{{x^3}}}{{{{\left( {{x^2} + {a^2}} \right)}^2}}}\) trên \(\left( {0; + \infty } \right),\) ta có \(\mathop {\max }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = \frac{{3\sqrt 3 }}{{16a}}\) khi \(x = a\sqrt 3 .\)
Suy ra thể tích khối tứ diện lớn nhất bằng \({V_{\max }} = \frac{{{a^3}\sqrt 3 }}{{16}}.\)