Có bao nhiêu số phức z thỏa mãn \(\left| z \right|=\sqrt{13}\) và \(\left( z-2i \right)\left( \overline{z}-4i \right)\) là số thuần ảo?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi z=x+yi với \(x,y\in \mathbb{R}\).
Ta có \(\left| z \right|=\sqrt{13}\Leftrightarrow {{x}^{2}}+{{y}^{2}}=13\,\,(1)\).
Mà \(\left( z-2i \right)\left( \overline{z}-4i \right)=\left( x+yi-2i \right)\left( x-yi-4i \right)=\left( {{x}^{2}}+{{y}^{2}}+2y-8 \right)+(-6x).i\) là số thuần ảo khi \({{x}^{2}}+{{y}^{2}}+2y-8=0\Rightarrow 13+2y-8=0\Rightarrow y=-\frac{5}{2}\).
Từ \(y=-\frac{5}{2}\) thay vào (1) ta được \(\left[ \begin{array}{l} x = \frac{{3\sqrt 3 }}{2}\\ x = - \frac{{3\sqrt 3 }}{2} \end{array} \right.\)
Vậy có 2 số phức thoả yêu cầu bài toán.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chu Văn An lần 2