Cho hàm số f(x) liên tục tại \(x_0\). Đạo hàm của f(x) tại \(x_0\) là
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐịnh nghĩa \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk % aaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiabfs5aej % aadIhacqGHsgIRcaaIWaaabeaakmaalaaabaGaamOzaiaacIcacaWG % 4bWaaSbaaSqaaiaaicdaaeqaaOGaey4kaSIaeuiLdqKaamiEaiaacM % cacqGHsislcaWGMbGaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGc % caGGPaaabaGaeuiLdqKaamiEaaaaaaa!528A! f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}}\) hay \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOzayaafa % WaaeWaaeaacaWG4bWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzk % aaGaeyypa0ZaaCbeaeaaciGGSbGaaiyAaiaac2gaaSqaaiaadIgacq % GHsgIRcaaIWaaabeaakmaalaaabaGaamOzaiaacIcacaWG4bWaaSba % aSqaaiaaicdaaeqaaOGaey4kaSIaamiAaiaacMcacqGHsislcaWGMb % GaaiikaiaadIhadaWgaaWcbaGaaGimaaqabaGccaGGPaaabaGaamiA % aaaaaaa!4E28! f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f({x_0} + h) - f({x_0})}}{h}\) (nếu tồn tại giới hạn).